initial commit
This commit is contained in:
107
train/sft/finetune.sh
Executable file
107
train/sft/finetune.sh
Executable file
@@ -0,0 +1,107 @@
|
||||
#!/bin/bash
|
||||
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||
DIR=`pwd`
|
||||
|
||||
# Guide:
|
||||
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||
# Please set the options below according to the comments.
|
||||
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||
# After setting the options, please run the script on each worker.
|
||||
|
||||
# Number of GPUs per GPU worker
|
||||
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||
|
||||
# Number of GPU workers, for single-worker training, please set to 1
|
||||
NNODES=${NNODES:-1}
|
||||
|
||||
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||
NODE_RANK=${NODE_RANK:-0}
|
||||
|
||||
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||
MASTER_ADDR=${MASTER_ADDR:-localhost}
|
||||
|
||||
# The port for communication
|
||||
MASTER_PORT=${MASTER_PORT:-6001}
|
||||
|
||||
MODEL="Qwen/Qwen1.5-7B" # Set the path if you do not want to load from huggingface directly
|
||||
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||
# See the section for finetuning in README for more information.
|
||||
DATA="path_to_data"
|
||||
DS_CONFIG_PATH="ds_config_zero3.json"
|
||||
USE_LORA=False
|
||||
Q_LORA=False
|
||||
|
||||
function usage() {
|
||||
echo '
|
||||
Usage: bash finetune/finetune_lora_ds.sh [-m MODEL_PATH] [-d DATA_PATH] [--deepspeed DS_CONFIG_PATH] [--use_lora USE_LORA] [--q_lora Q_LORA]
|
||||
'
|
||||
}
|
||||
|
||||
while [[ "$1" != "" ]]; do
|
||||
case $1 in
|
||||
-m | --model )
|
||||
shift
|
||||
MODEL=$1
|
||||
;;
|
||||
-d | --data )
|
||||
shift
|
||||
DATA=$1
|
||||
;;
|
||||
--deepspeed )
|
||||
shift
|
||||
DS_CONFIG_PATH=$1
|
||||
;;
|
||||
--use_lora )
|
||||
shift
|
||||
USE_LORA=$1
|
||||
;;
|
||||
--q_lora )
|
||||
shift
|
||||
Q_LORA=$1
|
||||
;;
|
||||
-h | --help )
|
||||
usage
|
||||
exit 0
|
||||
;;
|
||||
* )
|
||||
echo "Unknown argument ${1}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
DISTRIBUTED_ARGS="
|
||||
--nproc_per_node $GPUS_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $NODE_RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT
|
||||
"
|
||||
|
||||
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||
--model_name_or_path $MODEL \
|
||||
--data_path $DATA \
|
||||
--bf16 False \
|
||||
--output_dir output_qwen \
|
||||
--num_train_epochs 5 \
|
||||
--per_device_train_batch_size 2 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 10 \
|
||||
--save_total_limit 10 \
|
||||
--learning_rate 3e-4 \
|
||||
--weight_decay 0.01 \
|
||||
--adam_beta2 0.95 \
|
||||
--warmup_ratio 0.01 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--report_to "none" \
|
||||
--model_max_length 512 \
|
||||
--lazy_preprocess True \
|
||||
--use_lora ${USE_LORA} \
|
||||
--q_lora ${Q_LORA} \
|
||||
--gradient_checkpointing \
|
||||
--deepspeed ${DS_CONFIG_PATH}
|
||||
Reference in New Issue
Block a user