import torch from AiBase import AiBase class QwenAi(AiBase): default_device = 'cuda' # the device to load the model onto default_model_id = 'Qwen/Qwen1.5-1.8B-Chat' default_instruction = {'role': 'system', 'name': 'system', 'content': 'Your name is "Laura". You are an AI created by Alice.'} def __init__(self, model_id_or_path=default_model_id): super().__init__(model_id_or_path) def generate(self, messages, token_count=100, **kwargs): try: # prepare messages = [m for m in messages if m['role'] != 'system'] input_messages = [self.default_instruction] + messages # generate text = self.tokenizer.apply_chat_template(input_messages, tokenize=False, add_generation_prompt=True) model_inputs = self.tokenizer([text], return_tensors='pt').to(self.default_device) generated_ids = self.model.generate(model_inputs.input_ids, max_new_tokens=token_count) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # add response and save conversation response_entry = {'role': 'assistant', 'name': 'assistant', 'content': response} messages.append(response_entry) self.record_conversation(input_messages, response_entry) return messages finally: torch.cuda.empty_cache() # clear cache or the gpu mem will be used a lot