added its

This commit is contained in:
wea_ondara
2019-11-24 13:17:25 +01:00
parent 58f6d03820
commit 356eefaf53
2 changed files with 128 additions and 0 deletions

121
its.py Normal file
View File

@@ -0,0 +1,121 @@
import os
import os
import sys
from datetime import datetime
from datetime import timedelta
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
from common import calc_intervals, imprt, printnoln, rprint, DAYS_NEW_USER
from loader import load, dmt, cms
OLD_USER_PERCENTILE = 0.95
colors = ['red', 'green', 'blue', 'orange', 'deeppink']
def main(folder, intervl):
users, posts, firstcontrib, sumcontrib = load(folder)
intervals = calc_intervals(posts, intervl)
start = cms()
printnoln("reading sentiments ...")
cachedsentiments = imprt(folder + "/output/sentiments.py").answers
rprint("reading sentiments ... took " + str(cms() - start) + "ms")
outputdir = folder + "/output/its/"
os.system("mkdir -p " + outputdir)
data = []
for (option_date_from, option_date_to) in intervals:
if option_date_to <= datetime.fromisoformat("2015-01-01T00:00:00"):
data.append(float("nan"))
continue
print(option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y"))
# avg sentiments
# print(dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound']
# for a in p['Answers'] if option_date_from <= a['CreationDate'] < option_date_to
# and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) <= a['CreationDate']])
# .filter(lambda p: p != [])
# .getresults())
# break
filtered = (dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound']
for a in p['Answers'] if option_date_from <= a['CreationDate'] < option_date_to
and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) <= a['CreationDate']])
.filter(lambda p: p != [])
.reduce(lambda a, b: a + b, lambda a, b: a + b, lambda: [])
.getresults())
avg = np.average(filtered) if len(filtered) > 0 else float("nan")
data.append(avg)
# filter nan entries
for i in range(len(data)):
while i < len(data) and str(data[i]) == "nan":
del data[i]
del intervals[i]
print("Computing ITS ...")
t = np.reshape(np.array([i for i in range(len(data))]), (-1, 1))
# print("t", t)
x = np.reshape(np.array([(0 if option_date_to <= datetime.fromisoformat("2018-09-01T00:00:00") else 1) for (option_date_from, option_date_to) in intervals]), (-1, 1))
# print("x", x)
X = np.reshape(np.array([data[0] for i in range(len(data))]), (-1, 1))
# print("X", X)
X = np.concatenate((X, t), 1)
X = np.concatenate((X, x), 1)
X = np.concatenate((X, np.multiply(t, x)), 1)
y = np.reshape(np.array(data), (-1, 1))
# print("Xfin", X)
# print("y", y)
reg = LinearRegression()
reg.fit(X, y)
score = reg.score(X, y);
coef = np.reshape(np.array(reg.coef_), (-1, 1))
its = X.dot(coef) + data[0]
print("score: " + str(score))
print("coef: " + str(coef))
print("its: " + str(its))
fig = plt.figure(figsize=(16, 12))
plt.plot([i[0] for i in intervals], data, label="average sentiment")
plt.plot([i[0] for i in intervals], its, label="ITS (score " + str(score) + ")")
plt.title("Average sentiments for new users")
plt.xticks(rotation=90)
plt.xlabel("months")
plt.ylabel("sentiment")
plt.legend(loc="upper right")
outfile = outputdir + "/average_sentiments.png"
plt.savefig(outfile, bbox_inches='tight')
plt.close(fig)
if __name__ == "__main__":
# execute only if run as a script
usage = sys.argv[0] + " <folder>"
if len(sys.argv) < 2:
print(usage)
sys.exit(1)
folder = sys.argv[1]
if not os.path.isdir(folder):
print(folder + " is not a folder")
sys.exit(1)
interval = 3
if len(sys.argv) >= 3:
if sys.argv[2].startswith("-i"):
interval = sys.argv[2][2:]
try:
interval = int(interval)
except ValueError:
print("-i: int required")
sys.exit(1)
if interval < 1 or interval > 12:
print("-i: only 1 - 12")
sys.exit(1)
else:
print("unknown parameter: " + sys.argv[2])
sys.exit(1)
main(folder, interval)