added its
This commit is contained in:
121
its.py
Normal file
121
its.py
Normal file
@@ -0,0 +1,121 @@
|
|||||||
|
import os
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from datetime import datetime
|
||||||
|
from datetime import timedelta
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
|
||||||
|
from common import calc_intervals, imprt, printnoln, rprint, DAYS_NEW_USER
|
||||||
|
from loader import load, dmt, cms
|
||||||
|
|
||||||
|
OLD_USER_PERCENTILE = 0.95
|
||||||
|
|
||||||
|
colors = ['red', 'green', 'blue', 'orange', 'deeppink']
|
||||||
|
|
||||||
|
|
||||||
|
def main(folder, intervl):
|
||||||
|
users, posts, firstcontrib, sumcontrib = load(folder)
|
||||||
|
|
||||||
|
intervals = calc_intervals(posts, intervl)
|
||||||
|
|
||||||
|
start = cms()
|
||||||
|
printnoln("reading sentiments ...")
|
||||||
|
cachedsentiments = imprt(folder + "/output/sentiments.py").answers
|
||||||
|
rprint("reading sentiments ... took " + str(cms() - start) + "ms")
|
||||||
|
|
||||||
|
outputdir = folder + "/output/its/"
|
||||||
|
os.system("mkdir -p " + outputdir)
|
||||||
|
|
||||||
|
data = []
|
||||||
|
for (option_date_from, option_date_to) in intervals:
|
||||||
|
if option_date_to <= datetime.fromisoformat("2015-01-01T00:00:00"):
|
||||||
|
data.append(float("nan"))
|
||||||
|
continue
|
||||||
|
print(option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y"))
|
||||||
|
# avg sentiments
|
||||||
|
# print(dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound']
|
||||||
|
# for a in p['Answers'] if option_date_from <= a['CreationDate'] < option_date_to
|
||||||
|
# and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) <= a['CreationDate']])
|
||||||
|
# .filter(lambda p: p != [])
|
||||||
|
# .getresults())
|
||||||
|
# break
|
||||||
|
filtered = (dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound']
|
||||||
|
for a in p['Answers'] if option_date_from <= a['CreationDate'] < option_date_to
|
||||||
|
and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) <= a['CreationDate']])
|
||||||
|
.filter(lambda p: p != [])
|
||||||
|
.reduce(lambda a, b: a + b, lambda a, b: a + b, lambda: [])
|
||||||
|
.getresults())
|
||||||
|
avg = np.average(filtered) if len(filtered) > 0 else float("nan")
|
||||||
|
data.append(avg)
|
||||||
|
|
||||||
|
# filter nan entries
|
||||||
|
for i in range(len(data)):
|
||||||
|
while i < len(data) and str(data[i]) == "nan":
|
||||||
|
del data[i]
|
||||||
|
del intervals[i]
|
||||||
|
|
||||||
|
print("Computing ITS ...")
|
||||||
|
t = np.reshape(np.array([i for i in range(len(data))]), (-1, 1))
|
||||||
|
# print("t", t)
|
||||||
|
x = np.reshape(np.array([(0 if option_date_to <= datetime.fromisoformat("2018-09-01T00:00:00") else 1) for (option_date_from, option_date_to) in intervals]), (-1, 1))
|
||||||
|
# print("x", x)
|
||||||
|
X = np.reshape(np.array([data[0] for i in range(len(data))]), (-1, 1))
|
||||||
|
# print("X", X)
|
||||||
|
X = np.concatenate((X, t), 1)
|
||||||
|
X = np.concatenate((X, x), 1)
|
||||||
|
X = np.concatenate((X, np.multiply(t, x)), 1)
|
||||||
|
y = np.reshape(np.array(data), (-1, 1))
|
||||||
|
# print("Xfin", X)
|
||||||
|
# print("y", y)
|
||||||
|
reg = LinearRegression()
|
||||||
|
reg.fit(X, y)
|
||||||
|
score = reg.score(X, y);
|
||||||
|
coef = np.reshape(np.array(reg.coef_), (-1, 1))
|
||||||
|
its = X.dot(coef) + data[0]
|
||||||
|
print("score: " + str(score))
|
||||||
|
print("coef: " + str(coef))
|
||||||
|
print("its: " + str(its))
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(16, 12))
|
||||||
|
plt.plot([i[0] for i in intervals], data, label="average sentiment")
|
||||||
|
plt.plot([i[0] for i in intervals], its, label="ITS (score " + str(score) + ")")
|
||||||
|
plt.title("Average sentiments for new users")
|
||||||
|
plt.xticks(rotation=90)
|
||||||
|
plt.xlabel("months")
|
||||||
|
plt.ylabel("sentiment")
|
||||||
|
plt.legend(loc="upper right")
|
||||||
|
outfile = outputdir + "/average_sentiments.png"
|
||||||
|
plt.savefig(outfile, bbox_inches='tight')
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# execute only if run as a script
|
||||||
|
usage = sys.argv[0] + " <folder>"
|
||||||
|
if len(sys.argv) < 2:
|
||||||
|
print(usage)
|
||||||
|
sys.exit(1)
|
||||||
|
folder = sys.argv[1]
|
||||||
|
if not os.path.isdir(folder):
|
||||||
|
print(folder + " is not a folder")
|
||||||
|
sys.exit(1)
|
||||||
|
interval = 3
|
||||||
|
if len(sys.argv) >= 3:
|
||||||
|
if sys.argv[2].startswith("-i"):
|
||||||
|
interval = sys.argv[2][2:]
|
||||||
|
try:
|
||||||
|
interval = int(interval)
|
||||||
|
except ValueError:
|
||||||
|
print("-i: int required")
|
||||||
|
sys.exit(1)
|
||||||
|
if interval < 1 or interval > 12:
|
||||||
|
print("-i: only 1 - 12")
|
||||||
|
sys.exit(1)
|
||||||
|
else:
|
||||||
|
print("unknown parameter: " + sys.argv[2])
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
main(folder, interval)
|
||||||
Reference in New Issue
Block a user