wip
This commit is contained in:
100
its.py
100
its.py
@@ -1,19 +1,20 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os
|
||||
import statsmodels.api as sm
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
from common import calc_intervals, printnoln, rprint, DAYS_NEW_USER
|
||||
from loader import load, dmt, cms
|
||||
from sentiments import readtoxleveltxt
|
||||
import statsmodels.api as sm
|
||||
|
||||
colors = ['red', 'green', 'blue', 'orange', 'deeppink']
|
||||
thresholds = [2, 3, 4, 5, 6]
|
||||
changedate = datetime.fromisoformat("2018-09-01T00:00:00")
|
||||
|
||||
|
||||
def main(folder, intervl):
|
||||
@@ -55,42 +56,13 @@ def main(folder, intervl):
|
||||
del data[i]
|
||||
del intervals[i]
|
||||
|
||||
# print("Computing ITS ...")
|
||||
# t = np.reshape(np.array([i for i in range(len(data))]), (-1, 1))
|
||||
# x = np.reshape(np.array([(0 if option_date_to <= datetime.fromisoformat("2018-09-01T00:00:00") else 1) for (option_date_from, option_date_to) in intervals]), (-1, 1))
|
||||
# X = np.array(t)
|
||||
# X = np.concatenate((X, x), 1)
|
||||
# X = np.concatenate((X, np.multiply(t, x)), 1)
|
||||
# y = np.reshape(np.array(data), (-1, 1))
|
||||
# # print("Xfin", X)
|
||||
# # print("y", y)
|
||||
# reg = LinearRegression()
|
||||
# reg.fit(X, y)
|
||||
# score = reg.score(X, y)
|
||||
# coef = np.reshape(np.array(reg.coef_), (-1, 1))
|
||||
# its = X.dot(coef) + reg.intercept_
|
||||
# print("score: " + str(score))
|
||||
# print("coef: " + str(coef))
|
||||
# print("its: " + str(its))
|
||||
|
||||
print("Computing full ITS")
|
||||
t = np.reshape(np.array([i for i in range(len(datasingle)) for j in datasingle[i]]), (-1, 1))
|
||||
x = np.reshape(np.array([(0 if intervals[i][1] <= datetime.fromisoformat("2018-09-01T00:00:00") else 1) for i in range(len(datasingle)) for j in datasingle[i]]), (-1, 1))
|
||||
x = np.reshape(np.array([(0 if intervals[i][1] <= changedate else 1) for i in range(len(datasingle)) for j in datasingle[i]]), (-1, 1))
|
||||
X = np.array(t)
|
||||
X = np.concatenate((X, x), 1)
|
||||
X = np.concatenate((X, np.multiply(t, x)), 1)
|
||||
y = np.reshape(np.array([d for a in datasingle for d in a]), (-1, 1))
|
||||
# print("Xfin", X)
|
||||
# print("y", y)
|
||||
# reg = LinearRegression()
|
||||
# reg.fit(X, y)
|
||||
# score2 = reg.score(X, y)
|
||||
# coef2 = np.reshape(np.array(reg.coef_), (-1, 1))
|
||||
# its2 = X.dot(coef2) + reg.intercept_
|
||||
# print("intercept: " + str(reg.intercept_))
|
||||
# print("score: " + str(score2))
|
||||
# print("coef: " + str(coef2))
|
||||
# print("its: " + str(its2))
|
||||
X = sm.add_constant(X)
|
||||
res = sm.OLS(y, X).fit()
|
||||
p2 = res.pvalues
|
||||
@@ -101,29 +73,35 @@ def main(folder, intervl):
|
||||
with open(outputdir + "/summary-i" + str(intervl) + ".txt", "w") as file:
|
||||
file.write(str(res.summary()))
|
||||
|
||||
# print("Computing segmented ITS before")
|
||||
# X = np.reshape(np.array([i for i in range(len(datasingle)) for j in datasingle[i] if intervals[i][1] <= datetime.fromisoformat("2018-09-01T00:00:00")]), (-1, 1))
|
||||
# y = np.reshape(np.array([j for i in range(len(datasingle)) for j in datasingle[i] if intervals[i][1] <= datetime.fromisoformat("2018-09-01T00:00:00")]), (-1, 1))
|
||||
# reg = LinearRegression()
|
||||
# reg.fit(X, y)
|
||||
# scoreb = reg.score(X, y)
|
||||
# coefb = np.reshape(np.array(reg.coef_), (-1, 1))
|
||||
# itsb = X.dot(coefb) + reg.intercept_
|
||||
# print("scoreb: " + str(scoreb))
|
||||
# print("coefb: " + str(coefb))
|
||||
# print("itsb: " + str(itsb))
|
||||
|
||||
# print("Computing segmented ITS after")
|
||||
# X = np.reshape(np.array([i for i in range(len(datasingle)) for j in datasingle[i] if intervals[i][1] > datetime.fromisoformat("2018-09-01T00:00:00")]), (-1, 1))
|
||||
# y = np.reshape(np.array([j for i in range(len(datasingle)) for j in datasingle[i] if intervals[i][1] > datetime.fromisoformat("2018-09-01T00:00:00")]), (-1, 1))
|
||||
# reg = LinearRegression()
|
||||
# reg.fit(X, y)
|
||||
# scorea = reg.score(X, y)
|
||||
# coefa = np.reshape(np.array(reg.coef_), (-1, 1))
|
||||
# itsa = X.dot(coefa) + reg.intercept_
|
||||
# print("scorea: " + str(scorea))
|
||||
# print("coefa: " + str(coefa))
|
||||
# print("itsa: " + str(itsa))
|
||||
thresdata = []
|
||||
thresols = []
|
||||
thresiv = []
|
||||
thresp = []
|
||||
print("Computing threshold ITS")
|
||||
for ti in thresholds:
|
||||
print(1, changedate - relativedelta(months=ti))
|
||||
print(2, changedate + relativedelta(months=ti))
|
||||
z = [(i, x) for (i, x) in zip(intervals, datasingle) if i[0] >= changedate - relativedelta(months=ti) and i[1] <= changedate + relativedelta(months=ti)]
|
||||
iv = [i for (i, x) in z]
|
||||
d = [x for (i, x) in z]
|
||||
t = np.reshape(np.array([i for i in range(len(d)) for j in d[i]]), (-1, 1))
|
||||
x = np.reshape(np.array([(0 if iv[i][1] <= changedate else 1) for i in range(len(d)) for j in d[i]]), (-1, 1))
|
||||
X = np.array(t)
|
||||
X = np.concatenate((X, x), 1)
|
||||
X = np.concatenate((X, np.multiply(t, x)), 1)
|
||||
y = np.reshape(np.array([v for a in d for v in a]), (-1, 1))
|
||||
X = sm.add_constant(X)
|
||||
res = sm.OLS(y, X).fit()
|
||||
tp = res.pvalues
|
||||
thresp.append(tp)
|
||||
# print("coef ols: " + str(res.params))
|
||||
# print("sum ols: " + str(res.summary()))
|
||||
coefthresols = np.reshape(np.array(res.params), (-1, 1))
|
||||
thresols.append(X.dot(coefthresols))
|
||||
thresiv.append(iv)
|
||||
thresdata.append(d)
|
||||
with open(outputdir + "/summary_threshold" + str(ti) + "-i" + str(intervl) + ".txt", "w") as file:
|
||||
file.write(str(res.summary()))
|
||||
|
||||
fig = plt.figure(figsize=(16, 12))
|
||||
plt.plot([i[0] for i in intervals], data, label="average sentiment")
|
||||
@@ -146,13 +124,11 @@ def main(folder, intervl):
|
||||
else:
|
||||
va = "top"
|
||||
plt.text(intervals[i][0], data[i], ("n=" if i == 0 else "") + str(len(datasingle[i])), ha="center", va=va)
|
||||
# plt.plot([i[0] for i in intervals], its, label="aggregated ITS (score " + str(score) + ")")
|
||||
# plt.plot([intervals[i][0] for i in range(len(datasingle)) for j in datasingle[i]], its2, label="single ITS (score " + str(score2) + ", p " + str(p2) + ")")
|
||||
plt.plot([intervals[i][0] for i in range(len(datasingle)) for j in datasingle[i]], its2ols, label="sm single ITS (pvalues " + str(p2) + ")")
|
||||
# plt.plot([intervals[i][0] for i in range(len(datasingle)) for j in datasingle[i] if intervals[i][1] <= datetime.fromisoformat("2018-09-01T00:00:00")], itsb,
|
||||
# label="segmented ITS b (score " + str(scoreb) + ")")
|
||||
# plt.plot([intervals[i][0] for i in range(len(datasingle)) for j in datasingle[i] if intervals[i][1] > datetime.fromisoformat("2018-09-01T00:00:00")], itsa,
|
||||
# label="segmented ITS a (score " + str(scorea) + ")")
|
||||
print("shape: " + str(np.shape(thresdata)))
|
||||
for (ti, t) in enumerate(thresholds):
|
||||
print("shape1: " + str(np.shape(thresdata[ti])))
|
||||
plt.plot([thresiv[ti][i][0] for i in range(len(thresdata[ti])) for j in thresdata[ti][i]], thresols[ti], label="thres ITS " + str(t) + " months (pvalues " + str(thresp[ti]) + ")")
|
||||
plt.title("Average sentiments for new users")
|
||||
plt.xticks(rotation=90)
|
||||
plt.xlabel("months")
|
||||
|
||||
Reference in New Issue
Block a user