import os import os import sys from datetime import datetime from datetime import timedelta import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from common import calc_intervals, imprt, printnoln, rprint, DAYS_NEW_USER from loader import load, dmt, cms OLD_USER_PERCENTILE = 0.95 colors = ['red', 'green', 'blue', 'orange', 'deeppink'] def main(folder, intervl): users, posts, firstcontrib, sumcontrib = load(folder) intervals = calc_intervals(posts, intervl) start = cms() printnoln("reading sentiments ...") cachedsentiments = imprt(folder + "/output/sentiments.py").answers rprint("reading sentiments ... took " + str(cms() - start) + "ms") outputdir = folder + "/output/its/" os.system("mkdir -p " + outputdir) data = [] for (option_date_from, option_date_to) in intervals: if option_date_to <= datetime.fromisoformat("2015-01-01T00:00:00"): data.append(float("nan")) continue print(option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y")) # avg sentiments # print(dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound'] # for a in p['Answers'] if option_date_from <= a['CreationDate'] < option_date_to # and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) <= a['CreationDate']]) # .filter(lambda p: p != []) # .getresults()) # break filtered = (dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound'] for a in p['Answers'] if option_date_from <= a['CreationDate'] < option_date_to and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) <= a['CreationDate']]) .filter(lambda p: p != []) .reduce(lambda a, b: a + b, lambda a, b: a + b, lambda: []) .getresults()) avg = np.average(filtered) if len(filtered) > 0 else float("nan") data.append(avg) # filter nan entries for i in range(len(data)): while i < len(data) and str(data[i]) == "nan": del data[i] del intervals[i] print("Computing ITS ...") t = np.reshape(np.array([i for i in range(len(data))]), (-1, 1)) # print("t", t) x = np.reshape(np.array([(0 if option_date_to <= datetime.fromisoformat("2018-09-01T00:00:00") else 1) for (option_date_from, option_date_to) in intervals]), (-1, 1)) # print("x", x) X = np.reshape(np.array([data[0] for i in range(len(data))]), (-1, 1)) # print("X", X) X = np.concatenate((X, t), 1) X = np.concatenate((X, x), 1) X = np.concatenate((X, np.multiply(t, x)), 1) y = np.reshape(np.array(data), (-1, 1)) # print("Xfin", X) # print("y", y) reg = LinearRegression() reg.fit(X, y) score = reg.score(X, y); coef = np.reshape(np.array(reg.coef_), (-1, 1)) its = X.dot(coef) + data[0] print("score: " + str(score)) print("coef: " + str(coef)) print("its: " + str(its)) fig = plt.figure(figsize=(16, 12)) plt.plot([i[0] for i in intervals], data, label="average sentiment") plt.plot([i[0] for i in intervals], its, label="ITS (score " + str(score) + ")") plt.title("Average sentiments for new users") plt.xticks(rotation=90) plt.xlabel("months") plt.ylabel("sentiment") plt.legend(loc="upper right") outfile = outputdir + "/average_sentiments.png" plt.savefig(outfile, bbox_inches='tight') plt.close(fig) if __name__ == "__main__": # execute only if run as a script usage = sys.argv[0] + " " if len(sys.argv) < 2: print(usage) sys.exit(1) folder = sys.argv[1] if not os.path.isdir(folder): print(folder + " is not a folder") sys.exit(1) interval = 3 if len(sys.argv) >= 3: if sys.argv[2].startswith("-i"): interval = sys.argv[2][2:] try: interval = int(interval) except ValueError: print("-i: int required") sys.exit(1) if interval < 1 or interval > 12: print("-i: only 1 - 12") sys.exit(1) else: print("unknown parameter: " + sys.argv[2]) sys.exit(1) main(folder, interval)