166 lines
7.2 KiB
Python
166 lines
7.2 KiB
Python
from datetime import datetime
|
|
from datetime import timedelta
|
|
import sys
|
|
import os
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from collections import defaultdict
|
|
from loader import load, dmt, cms
|
|
import math
|
|
from common import calc_intervals
|
|
|
|
printnoln = lambda text: print(text, end='', flush=True)
|
|
rprint = lambda text: print('\r' + text)
|
|
|
|
DAYS_NEW_USER = 7
|
|
OLD_USER_YEAR = 3
|
|
|
|
analyser = SentimentIntensityAnalyzer()
|
|
colors = ['red', 'green', 'blue', 'orange', 'deeppink']
|
|
|
|
|
|
def main(folder):
|
|
users, posts, firstcontrib, sumcontrib = load(folder)
|
|
|
|
intervals = calc_intervals(posts)
|
|
cachedsentiments = {}
|
|
|
|
postcounts = range(1, 5 + 1)
|
|
for (option_date_from, option_date_to) in intervals:
|
|
# get questions for option_date_from <= creation date < option_date_to
|
|
newposts = dmt(posts).filter(lambda p: option_date_from <= p['CreationDate'] < option_date_to, "filter posts by dates").getresults()
|
|
if len(newposts) == 0:
|
|
continue
|
|
print("computing toxic levels: " + option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y"))
|
|
gfig, gaxs = plt.subplots(2, 2, figsize=(16, 12))
|
|
gaxs[0, 0].set_title('Neg')
|
|
gaxs[1, 0].set_title('Neu')
|
|
gaxs[0, 1].set_title('Pos')
|
|
gaxs[1, 1].set_title('Compound')
|
|
|
|
gneg = []
|
|
gneu = []
|
|
gpos = []
|
|
gcom = []
|
|
|
|
outfolder = folder + "/output/batch/"
|
|
os.system("mkdir -p " + outfolder)
|
|
goutfilenamenewusers = outfolder + "batch_newusers_" + folder.split("/")[-1] + "_" + option_date_from.strftime("%d-%m-%Y") + "_" + option_date_to.strftime("%d-%m-%Y")
|
|
goutfilenameoldusers = outfolder + "batch_oldusers_" + folder.split("/")[-1] + "_" + option_date_from.strftime("%d-%m-%Y") + "_" + option_date_to.strftime("%d-%m-%Y")
|
|
|
|
for option_posts in postcounts:
|
|
# print(option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y") + " - #posts: " + str(option_posts))
|
|
|
|
# computer toxic levels
|
|
start = cms()
|
|
printnoln("computing toxic levels: filtering")
|
|
toxlevels = defaultdict(list)
|
|
searchedposts = defaultdict(int)
|
|
filteredposts = []
|
|
for (i, post) in enumerate(newposts):
|
|
userid = post['OwnerUserId']
|
|
|
|
# check first contribution
|
|
if firstcontrib[userid] + timedelta(days=DAYS_NEW_USER) < post['CreationDate']:
|
|
continue
|
|
|
|
# no more than option_posts posts from one user
|
|
searchedposts[userid] += 1
|
|
if searchedposts[userid] > option_posts:
|
|
continue
|
|
|
|
filteredposts.append(post)
|
|
|
|
for (i, post) in enumerate(filteredposts):
|
|
if (i + 1) % 100 == 0:
|
|
printnoln("\rcomputing toxic levels: post #" + str(i + 1) + "/" + str(len(filteredposts)))
|
|
if (i + 1) == len(newposts):
|
|
printnoln("\rcomputing toxic levels: post #" + str(i + 1) + "/" + str(len(filteredposts)))
|
|
for a in post['Answers']:
|
|
if a['Id'] in cachedsentiments.keys():
|
|
toxlevel = cachedsentiments[a['Id']]
|
|
else:
|
|
toxlevel = computeToxLevel(a['Body'])
|
|
cachedsentiments[a['Id']] = toxlevel
|
|
toxlevels[post['Id']].append(toxlevel)
|
|
rprint("computing toxic levels: post #" + str(len(filteredposts)) + "/" + str(len(filteredposts)) + " ... took " + str(cms() - start) + "ms")
|
|
|
|
outfilename = goutfilenamenewusers + "_" + str(option_posts)
|
|
dumptoxlevels(toxlevels, outfilename + ".py")
|
|
|
|
neglevelsflat = [item['neg'] for item in flatmap(toxlevels.values())]
|
|
neulevelsflat = [item['neu'] for item in flatmap(toxlevels.values())]
|
|
poslevelsflat = [item['pos'] for item in flatmap(toxlevels.values())]
|
|
comlevelsflat = [item['compound'] for item in flatmap(toxlevels.values())]
|
|
|
|
gneg.append(neglevelsflat)
|
|
gneu.append(neulevelsflat)
|
|
gpos.append(poslevelsflat)
|
|
gcom.append(comlevelsflat)
|
|
|
|
fig, axs = plt.subplots(2, 2, figsize=(16, 12))
|
|
axs[0, 0].set_title('Neg')
|
|
axs[1, 0].set_title('Neu')
|
|
axs[0, 1].set_title('Pos')
|
|
axs[1, 1].set_title('Compound')
|
|
axs[0, 0].hist(neglevelsflat, np.linspace(0, 1, 1 * 100))
|
|
axs[1, 0].hist(neulevelsflat, np.linspace(0, 1, 1 * 100))
|
|
axs[0, 1].hist(poslevelsflat, np.linspace(0, 1, 1 * 100))
|
|
axs[1, 1].hist(comlevelsflat, np.linspace(-1, 1, 2 * 100))
|
|
axs[0, 0].set_yscale('log')
|
|
axs[1, 0].set_yscale('log')
|
|
axs[0, 1].set_yscale('log')
|
|
axs[1, 1].set_yscale('log')
|
|
|
|
# plt.show()
|
|
fig.suptitle("Sentiment of answers to the first " + str(option_posts) + " (max) posts within 1 week of 1st contribution\nPosts created between "
|
|
+ option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y"))
|
|
fig.savefig(outfilename + ".png", bbox_inches='tight')
|
|
plt.close(fig)
|
|
|
|
# global
|
|
gaxs[0, 0].hist(gneg, np.linspace(0, 1, 1 * 100), color=colors[:len(postcounts)], label=[str(option_posts) + " posts" for option_posts in postcounts])
|
|
gaxs[1, 0].hist(gneu, np.linspace(0, 1, 1 * 100), color=colors[:len(postcounts)], label=[str(option_posts) + " posts" for option_posts in postcounts])
|
|
gaxs[0, 1].hist(gpos, np.linspace(0, 1, 1 * 100), color=colors[:len(postcounts)], label=[str(option_posts) + " posts" for option_posts in postcounts])
|
|
gaxs[1, 1].hist(gcom, np.linspace(-1, 1, 2 * 100), color=colors[:len(postcounts)], label=[str(option_posts) + " posts" for option_posts in postcounts])
|
|
gaxs[0, 0].legend(loc="upper right")
|
|
gaxs[1, 0].legend(loc="upper right")
|
|
gaxs[0, 1].legend(loc="upper right")
|
|
gaxs[1, 1].legend(loc="upper right")
|
|
gaxs[0, 0].set_yscale('log')
|
|
gaxs[1, 0].set_yscale('log')
|
|
gaxs[0, 1].set_yscale('log')
|
|
gaxs[1, 1].set_yscale('log')
|
|
gfig.suptitle("Sentiment of answers to the first X (max) posts within 1 week of 1st contribution\nPosts created between " + option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y"))
|
|
gfig.savefig(goutfilenamenewusers + ".png", bbox_inches='tight')
|
|
plt.close(gfig)
|
|
|
|
|
|
def computeToxLevel(text):
|
|
return analyser.polarity_scores(text)
|
|
|
|
|
|
def flatmap(arr):
|
|
return [item for sublist in arr for item in sublist]
|
|
|
|
|
|
def dumptoxlevels(lvls, filename):
|
|
with open(filename, "w") as file:
|
|
file.write("from collections import defaultdict\n\n")
|
|
file.write("toxlevels = " + str(lvls).replace("<class 'list'>", "list", 1) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# execute only if run as a script
|
|
usage = sys.argv[0] + " <folder>"
|
|
if len(sys.argv) < 2:
|
|
print(usage)
|
|
sys.exit(1)
|
|
folder = sys.argv[1]
|
|
if not os.path.isdir(folder):
|
|
print(folder + " is not a folder")
|
|
sys.exit(1)
|
|
|
|
main(folder)
|