82 lines
2.9 KiB
Python
82 lines
2.9 KiB
Python
from datetime import datetime
|
|
from datetime import timedelta
|
|
import sys
|
|
import os
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from collections import defaultdict
|
|
from loader import load, dmt, cms
|
|
import math
|
|
from common import calc_intervals
|
|
|
|
printnoln = lambda text: print(text, end='', flush=True)
|
|
rprint = lambda text: print('\r' + text)
|
|
|
|
DAYS_NEW_USER = 7
|
|
OLD_USER_YEAR = 3
|
|
|
|
analyser = SentimentIntensityAnalyzer()
|
|
colors = ['red', 'green', 'blue', 'orange', 'deeppink']
|
|
|
|
|
|
def main(folder):
|
|
users, posts, firstcontrib, sumcontrib = load(folder)
|
|
intervals = calc_intervals(posts)
|
|
|
|
for (option_date_from, option_date_to) in intervals:
|
|
print((option_date_from.strftime("%d-%m-%Y"), option_date_to.strftime("%d-%m-%Y")))
|
|
|
|
# filter posts by option_date_from <= creation date <= option_date_to
|
|
# newusers = set(dmt(users).filter(lambda u: option_date_from <= u['CreationDate'] < option_date_to, "filtering users by creation").map(lambda u: u['Id'], "getting user ids").getresults())
|
|
newposts = dmt(posts).filter(lambda p: option_date_from <= p['CreationDate'] < option_date_to, "filtering posts by date").getresults()
|
|
|
|
postcounts = defaultdict(list)
|
|
i = 0
|
|
for p in newposts:
|
|
postcounts[p['OwnerUserId']].append(p)
|
|
i = i + 1
|
|
postcounts = {id: len(pc) for (id, pc) in postcounts.items()}
|
|
# print("i: " + str(i) + " expected: " + str(len(newposts)) + " is: " + str(sum([pc for pc in postcounts.values()])))
|
|
|
|
outputdir = folder + "/output/posthist/"
|
|
os.system("mkdir -p " + outputdir)
|
|
histfilename = outputdir + "posthist_" + folder.split("/")[-1] + "_" + option_date_from.strftime("%d-%m-%Y") + "_" + option_date_to.strftime("%d-%m-%Y")
|
|
|
|
histdata = [pc for pc in postcounts.values()]
|
|
fig = plt.figure(figsize=(16, 12))
|
|
plt.hist(histdata, range(max(histdata, default=0) + 1))
|
|
plt.yscale('log')
|
|
plt.ylim(bottom=0)
|
|
plt.title("Histogram for user post count registered between " + option_date_from.strftime("%d-%m-%Y") + " and " + option_date_to.strftime("%d-%m-%Y"))
|
|
fig.savefig(histfilename + ".png", bbox_inches='tight')
|
|
plt.close(fig)
|
|
|
|
|
|
def computeToxLevel(text):
|
|
return analyser.polarity_scores(text)
|
|
|
|
|
|
def flatmap(arr):
|
|
return [item for sublist in arr for item in sublist]
|
|
|
|
|
|
def dumptoxlevels(lvls, filename):
|
|
with open(filename, "w") as file:
|
|
file.write("from collections import defaultdict\n\n")
|
|
file.write("toxlevels = " + str(lvls).replace("<class 'list'>", "list", 1) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# execute only if run as a script
|
|
usage = sys.argv[0] + " <folder>"
|
|
if len(sys.argv) < 2:
|
|
print(usage)
|
|
sys.exit(1)
|
|
folder = sys.argv[1]
|
|
if not os.path.isdir(folder):
|
|
print(folder + " is not a folder")
|
|
sys.exit(1)
|
|
|
|
main(folder)
|