Files
master/its.py
wea_ondara 6b29d4791e wip
2020-05-08 09:29:35 +02:00

184 lines
7.4 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
import os
import statsmodels.api as sm
import sys
from datetime import datetime
from datetime import timedelta
from dateutil.relativedelta import relativedelta
from common import calc_intervals, printnoln, rprint, DAYS_NEW_USER, FIG_SIZE, difftime
from loader import load, dmt, cms
from sentiments import readtoxleveltxt
colors = ['red', 'green', 'blue', 'orange', 'deeppink']
thresholds = [6, 9, 12, 15]
changedate = datetime.fromisoformat("2018-09-01T00:00:00")
def main(folder, intervl):
users, posts, firstcontrib, sumcontrib = load(folder)
intervals = calc_intervals(posts, intervl)
start = cms()
printnoln("reading sentiments ...")
(_, cachedsentiments) = readtoxleveltxt(folder + "/output/sentiments.txt")
rprint("reading sentiments ... took " + str(cms() - start) + "ms")
outputdir = folder + "/output/its/"
os.system("mkdir -p " + outputdir)
data = []
datasingle = []
count = []
for (option_date_from, option_date_to) in intervals:
if option_date_to <= datetime.fromisoformat("2015-01-01T00:00:00"):
datasingle.append(float("nan"))
data.append(float("nan"))
count.append(float("nan"))
continue
print(option_date_from.strftime("%d-%m-%Y") + " to " + option_date_to.strftime("%d-%m-%Y"))
# avg sentiments
filtered = (dmt(posts).map(lambda p: [cachedsentiments[a['Id']]['compound']
for a in p['Answers']
if option_date_from <= p['CreationDate'] < option_date_to #post in interval
and firstcontrib[p['OwnerUserId']] + timedelta(days=DAYS_NEW_USER) > p['CreationDate'] # post created withon 1 week of 1st contrib
and p['CreationDate'] + timedelta(days=DAYS_NEW_USER) > a['CreationDate']]) # answer within 1 week of post creation
.filter(lambda p: p != [])
.reduce(lambda a, b: a + b, lambda a, b: a + b, lambda: [])
.getresults())
datasingle.append(filtered)
avg = np.average(filtered) if len(filtered) > 0 else float("nan")
data.append(avg)
count.append(len(filtered))
avgcount = np.mean([x for x in count if str(x) != "nan"])
stdcount = np.std([x for x in count if str(x) != "nan"])
for i in range(len(count)):
if str(count[i]) == "nan": # or np.abs((count[i] - avgcount) / stdcount) > 3:
datasingle[i] = float("nan")
data[i] = float("nan")
count[i] = float("nan")
# filter nan entries
for i in range(len(data)):
while i < len(data) and str(data[i]) == "nan":
del datasingle[i]
del data[i]
del intervals[i]
del count[i]
print("Computing full ITS")
t = np.reshape(np.array([i for i in range(len(datasingle)) for j in datasingle[i]]), (-1, 1))
x = np.reshape(np.array([(0 if intervals[i][0] <= changedate else 1) for i in range(len(datasingle)) for j in datasingle[i]]), (-1, 1))
X = np.array(t)
X = np.concatenate((X, x), 1)
X = np.concatenate((X, np.multiply(t, x)), 1)
y = np.reshape(np.array([d for a in datasingle for d in a]), (-1, 1))
X = sm.add_constant(X)
res = sm.OLS(y, X).fit()
p2 = res.pvalues
print("coef ols: " + str(res.params))
print("sum ols: " + str(res.summary()))
coef2ols = np.reshape(np.array(res.params), (-1, 1))
its2ols = X.dot(coef2ols)
with open(outputdir + "/summary-i" + str(intervl) + ".txt", "w") as file:
file.write(str(res.summary()))
thresdata = []
thresols = []
thresiv = []
thresp = []
print("Computing threshold ITS")
for ti in thresholds:
# print(1, changedate - relativedelta(months=ti))
# print(2, changedate + relativedelta(months=ti))
z = [(i, x) for (i, x) in zip(intervals, datasingle) if i[0] >= changedate - relativedelta(months=ti) and i[1] <= changedate + relativedelta(months=ti)]
iv = [i for (i, x) in z]
# print("iv " + str(iv))
d = [x for (i, x) in z]
t = np.reshape(np.array([i for i in range(len(d)) for j in d[i]]), (-1, 1))
x = np.reshape(np.array([(0 if iv[i][0] <= changedate else 1) for i in range(len(d)) for j in d[i]]), (-1, 1))
X = np.array(t)
X = np.concatenate((X, x), 1)
X = np.concatenate((X, np.multiply(t, x)), 1)
y = np.reshape(np.array([v for a in d for v in a]), (-1, 1))
X = sm.add_constant(X)
res = sm.OLS(y, X).fit()
tp = res.pvalues
thresp.append(tp)
# print("coef ols: " + str(res.params))
# print("sum ols: " + str(res.summary()))
coefthresols = np.reshape(np.array(res.params), (-1, 1))
thresols.append(X.dot(coefthresols))
thresiv.append(iv)
thresdata.append(d)
with open(outputdir + "/summary_threshold" + str(ti) + "-i" + str(intervl) + ".txt", "w") as file:
file.write(str(res.summary()))
fig = plt.figure(figsize=FIG_SIZE)
plt.plot([difftime(i[0]) for i in intervals], data, label="average sentiment")
plt.grid(True)
for i in range(len(data)):
va = "center"
if 0 < i < len(data) - 1:
if data[i - 1] < data[i] and data[i + 1] < data[i]:
va = "bottom"
elif data[i - 1] > data[i] and data[i + 1] > data[i]:
va = "top"
elif i == 0:
if data[i + 1] < data[i]:
va = "bottom"
else:
va = "top"
elif i == len(data) - 1:
if data[i - 1] < data[i]:
va = "bottom"
else:
va = "top"
plt.text(difftime(intervals[i][0]), data[i], ("n=" if i == 0 else "") + str(len(datasingle[i])), ha="center", va=va)
plt.plot([difftime(intervals[i][0]) for i in range(len(datasingle)) for j in datasingle[i]], its2ols, label="sm single ITS")
# print("shape: " + str(np.shape(thresdata)))
for (ti, t) in enumerate(thresholds):
# print("shape1: " + str(np.shape(thresdata[ti])))
plt.plot([difftime(thresiv[ti][i][0]) for i in range(len(thresdata[ti])) for j in thresdata[ti][i]], thresols[ti], label="thres ITS " + str(t) + " months")
plt.title("Average sentiments for new users")
plt.xticks(rotation=90)
plt.xlabel("months")
plt.ylabel("sentiment")
plt.legend(loc="upper right")
outfile = outputdir + "/average_sentiments-i" + str(intervl) + ".png"
plt.savefig(outfile, bbox_inches='tight')
plt.close(fig)
if __name__ == "__main__":
# execute only if run as a script
usage = sys.argv[0] + " <folder>"
if len(sys.argv) < 2:
print(usage)
sys.exit(1)
folder = sys.argv[1]
if not os.path.isdir(folder):
print(folder + " is not a folder")
sys.exit(1)
interval = 1
if len(sys.argv) >= 3:
if sys.argv[2].startswith("-i"):
interval = sys.argv[2][2:]
try:
interval = int(interval)
except ValueError:
print("-i: int required")
sys.exit(1)
if interval < 1 or interval > 12:
print("-i: only 1 - 12")
sys.exit(1)
else:
print("unknown parameter: " + sys.argv[2])
sys.exit(1)
main(folder, interval)